
FAQs

Want to catch a glimpse of how it's like working at Amazon?

You can refer to the software development topics on amazon.jobs.

What resource may I use during the coding challenge?

You may use the resource that are available for all candidates (e.g. JDK or STL). Use the in-browser
editor to work on the coding challenge and elaborate your coding approach as much as possible. Your
coding and elaboration skills are both considered in our evaluation.

Do I have to complete both scenarios in the coding challenge?

Yes, you're expected to complete both scenarios. Manage your time effectively by checking the on-
screen timer regularly during the coding challenge. Don't get stuck on one question. Move on to the
next one and return to it later if you need to.

Important Assessment topics

The time remaining will be clearly displayed on the screen. You will not be able to stop the timer once
you have started each test, so we recommend that you complete each test in one sitting.

Note that efficiency and optimization, as opposed to brute force solutions, earn more points! Your code
must compile for all code questions in order to move forward in the interview process. Be sure to test
your code and ensure it runs before you submit your code or before time runs out.

You can compile your code as many times as you like during the assessment, but there must a 15 second
interval between consecutive compilations.

Edge Cases: Ensure your solutions consider all edge cases and handle large inputs effectively. This is key
to doing well in the assessment.

Your code is being auto-saved periodically, and you can also save it clicking on the SAVE button. In case
of a system failure you can resume from the last saved instance. Your code will also auto-save when you
click on NEXT QUESTION if you are going back and forth.

If you need to take a break, the best time would be between the Coding Test and Work Styles
Assessment. If you choose to take a break, log out, and when you’re ready to start, log back in with the
credentials below and the test will take you where you left off last.

https://www.amazon.jobs/en/landing_pages/software-development-topics
https://www.amazon.jobs/en

TECHNICAL TOPICS
Programming Languages
Familiarity with a prominent language is generally a prerequisite for success. Be familiar with the syntax
and nuances of common languages – Java | Python | C# | C | C++ | Ruby | JavaScript
Data Structures
Storing and providing access to data in efficient ways. Understand the inner workings of common data
structures and be able to compare and contrast their usage in various applications. Know the runtimes
for common operations as well as how they use memory. Wikipedia is a great resource for brushing up
on data structures.
Algorithms
Basic implementation strategies of different classes of algorithms is more important than memorizing
the specific details of any given algorithm. Consider reviewing traversals and divide and conquer
algorithms. Consider knowing how and when to use a breadth-first search vs. a depth-first search, and
what the tradeoffs are. Knowing the runtimes, theoretical limitations, and basic implementation
strategies of different classes of algorithms > memorizing specific details of any given algorithm.
Coding
The most important thing a Software Development Engineer does at Amazon is write scalable, robust,
and well-tested code. Be comfortable coding by hand. Expect to be asked to write syntactically correct
code—no pseudo code. Check for edge cases and validate that no bad input can slip through. The goal is
to write code that’s as close to production-ready as possible. This is your chance to show off your coding
ability.
Object-Oriented Design
Good design is paramount to extensible, bug free, long-lived code. Using object-oriented design best
practices is one way to build lasting software. Have a working knowledge of a few common and useful
design patterns. Know the appropriate use of inheritance and aggregation. Expect to defend and
describe your design choices.
Databases
Most of the software that we write is backed by a data store, somewhere. Many of the challenges we
face arise when figuring out how to most efficiently retrieve or store data for future use. The more you
know about how relational and non-relational databases work and what tradeoffs exist between them,
the better prepared you will be.
Operating Systems
Be familiar with some OS topics that can affect code performance. You won’t need to know how to build
your own operating system from scratch, but you should have an understanding of: memory
management, processes, threads, synchronization, paging, and multithreading.

